Applications of MTP Conversion Cable

We know that MTP/MPO cable is a great option for nowadays data center fiber optic cabling which needs higher and higher cabling density and transmission capability. In most cases, 12-fiber MTP cable is used to realize 10G to 40G or 40G to 40G connection. However, there is a problem in this cabling system—only eight fibers of the 12-fiber MTP cable are used (four fibers for transmitting and four fibers for receiving), leaving the middle four fibers unused. That means using 12-fiber MTP cable cannot achieve 100% fiber utilization. To solve this problem, MTP conversion cable is available on the market. And this article is going to introduce applications of MTP conversion cable in data center.

1×3 MTP Conversion Cable

This type of MTP conversion cable is usually used for 40G to 120G connection. It is terminated with one 24-fiber MTP connector on one end and three 8-fiber MTP connectors on the other end. As shown in the following figure, a 120G CXP transceiver is plugged into the 100G CFP interface on the switch on the one side, while three 40G QSFP+ transceivers are plugged into the 40G QSFP+ interfaces on the switch on the other side. Then the 1×3 MTP conversion cable connects the 120G CXP transceiver with the three 40G QSFP+ transceivers—the 24-fiber MTP connector terminated at the cable is directly plugged into the CXP transceiver, while the three 8-fiber MTP connectors are plugged into the three QSFP+ transceivers. In this way, 40G to 100G migration can be realized smoothly.

40G to 120G connection with 1x3 MTP conversion cable

2×3 MTP Conversion Cable

This type of MTP conversion cable can be used for 10G to 40G or 40G to 40G connection. It is structured with two 12-fiber MTP connectors on one end and three 8-fiber MTP connectors on the other end. For 10G to 40G connection, MTP fiber optic cassette is also needed. As shown in the following figure, three 40G QSFP+ transceivers are plugged into the 40G QSFP+ interface on the switch on the one side, while twelve 10G SFP+ transceivers are plugged into the 10G SFP+ interfaces on the switch on the other side. Then the three 8-fiber MTP connectors terminated at 2×3 MTP conversion cable are directly plugged into the three 40G QSFP+ transceivers, while the two 12-fiber MTP connectors are plugged into the MTP 12 fiber adapters mounted at the rear of the MTP fiber optic cassette. With one end of twelve duplex LC patch cables plugged into the LC adapters on the front side of the cassette and the other end of the twelve cables plugged into twelve 10G SFP+ transceiver, the 10G to 40G connection is accomplished.

10G to 40G connection with 2x3 MTP conversion cable

For 40G to 40G connection, we can use a MTP adapter panel. From the figure below, we can find that the connections on both sides are symmetrical. The three 8-fiber MTP connectors at the end of 2×3 MTP conversion cable are directly plugged into the three 40G QSFP+ transceivers, then into 40G QSFP+ interfaces on the switch. And the two 12-fiber MTP connectors of both two MTP conversion cables are plugged into MTP 12 fiber adapters on the MTP adapter panel.

40G to 40G connection with 2x3 MTP conversion cable

Conclusion

It is not difficult to find that the three cabling solutions above make use of all the fibers. Therefore, data center managers can gain great value to utilize MTP conversion cable which can achieve 100% fiber utilization as well as meet the demand for high density cabling. FS.COM provides high quality 1×2, 1×3 and 2×3 MTP conversion cable at low price. If you want to know more details, please visit our site.

Do Not Forget to Clean the Fiber Optic Connector

We know that fiber optic connector plays an important role in connecting optical cable with other optical components. As an indispensable component in cable installation, the cleanliness of fiber optic connector needs attention. Since it is impossible to guarantee that fiber optic connector does not get dirty, do not forget to clean the fiber optic connector. This article is going to introduce two tools for your fiber optic connector cleaning—one-click cleaner and cassette cleaner.

Overview of One-Click Cleaner And Cassette Cleaner

Both of one-click cleaner and cassette cleaner utilize dry cleaning without any alcohol and other harsh chemicals. However, the one-click cleaner is applicable for cleaning both connector in adapter and exposed connector with one-push action, while the cassette cleaner is only applicable for exposed connector. In addition, one-click cleaner has three types for LC/MU, SC/ST/FC and MTP/MPO connector respectively, while cassette cleaner is used for MTP apc connector or MPO apc connector. In the following part, the cleaning procedures of them will be shown.

Cleaning Procedures

1.25mm LC/MU And 2.5mm SC/ST/FC One-click Cleaner

structure of 1.25mm LC MU one-click cleaner

The structure and procedures of these two types of one-click cleaner are similar, so take 1.25mm one-click cleaner for example.

For Connector in Adapter

  1. Remove the guide cap and cover from the cleaner tip.
  2. Insert cleaner tip into the adapter.
  3. Push the cleaner body to start cleaning the connector end face until you hear an audible “click” sound which indicates the cleaning process is finished.

For Exposed Connector

  1. Open the cover of the guide cap.
  2. Insert cleaner tip into the connector.
  3. Push the cleaner body to start cleaning the connector end face until you hear an audible “click” sound which indicates the cleaning process is finished.
MTP/MPO One-click Cleaner
MTP MPO one-click cleaner

For Connector in Adapter

  1. Pull off the guide cap.
  2. Insert the cleaning tool into the bulkhead and turn the cleaning wheel backwards until click two times.

For Exposed Connector

  1. Carefully pull out the guide cap cover.
  2. Insert the patch cord into the cleaning tool, apply slight pressure and turn the cleaning wheel backward until click two times.
Cassette Cleaner
cassette cleaner
  1. Remove connector dust cover.
  2. Select the appropriate cleaner for male/female.
  3. For MTP female connector or MPO female connector, use the cleaning brush and fluid to remove any debris from the pin holes.
  4. Depress the lever so that a fresh area of cleaning cloth is exposed.
  5. Position the ferrule against the cloth so that the fibers are in contact with the cleaning material. In the case of angled connectors, the ferrule will need to be adjusted accordingly.
  6. Wipe the connector in the direction shown on the cassette.
  7. Release the grip to seal off the cleaning cloth.
  8. Let the ferrule air-dry before inspecting with a 200xmicroscope.
  9. If still contaminated repeat all steps once again.
  10. Ensure that the connector does not touch any hard surfaces.

Note: Do not move connector back and forth. Connector is to be moved in only the direction of the arrows on the cleaner.

Conclusion

To ensure high level optical performance, it is critical to keep fiber optic connector clean and free of contaminants. One-click cleaner and cassette cleaner are being highly recommended as practical tools for cleaning optical fiber end-face without the use of alcohol. FS.COM provides various fiber optic cleaning tools. If you want to know more details, please visit our site.

Cabling Solutions for 100G QSFP28 Transceiver

Since the demand for high speed data transmission keeps growing, 100G Ethernet has been widely deployed in data center. Designed for high port density with small compact size and low power consumption, 100G QSFP28 transceivers domain the 100G transceiver module market. There are four 100G QSFP28 transceiver types popular on the market—100GBASE-SR4 QSFP28 transceiver, 100GBASE-PSM4 QSFP28 transceiver, 100GBASE-CWDM4 QSFP28 transceiver and 100GBASE-LR4 QSFP28 transceiver. And in this article, I will share cabling solutions for 100G QSFP28 transceiver with you.

We know that the above four 100G QSFP28 transceiver types can be divided into two categories according to the interface: 100GBASE-SR4 QSFP28 and 100GBASE-PSM4 QSFP28 are with MTP/MPO interface, while 100GBASE-CWDM4 QSFP28 and 100GBASE-LR4 QSFP28 are with duplex LC interface (shown as the figure below). Therefore, the cabling solutions are different respectively.

100G QSFP28 transceiver

Cabling Solution for 100G QSFP28 with MTP/MPO Interface

This kind of 100G QSFP28 transceiver is usually used with 100g MPO cable. For example, 100GBASE-SR4 QSFP28 can support 100G optical links over eight fibers and it can be connected with a 12-fiber MTP/MPO patch cable (four fibers for transmit, four fiber for receiver, leaving four fiber unused). Similar to 100GBASE-SR4 QSFP28, 100GBASE-PSM4 QSFP28 is also used with 12-fiber MTP/MPO patch cable. However, 100GBASE-SR4 QSFP28 utilizes multimode cable for 100 meters data transmission distance while 100GBASE-PSM4 QSFP28 utilizes single-mode cable for 500 meters optical links. Take 100GBASE-SR4 QSFP28 for example, the following figure shows that two 100GBASE-SR4 QSFP28 transceivers are connected with a multimode 12-fiber MTP trunk cable.

Cabling Solutions for 100GBASE-SR4 QSFP28 Transceiver

The following figure shows that with the use of multimode MTP-LC 8f fanout patch cord, one 100GBASE-SR4 QSFP28 transceiver can be connected with four 25GBASE-SR SFP28 transceivers.

100GBASE-SR4 with four 25GBASE-SR SFP28

Cabling Solution for 100G QSFP28 with Duplex LC Interface

Structured with duplex LC interface, 100GBASE-CWDM4 QSFP28 and 100GBASE-LR4 QSFP28 are usually used with single-mode patch cables with LC duplex connectors. When upgrading the network, we often meet the problem that we have to replace all the fiber patch cables. However, you do not have to worry about this issue if your transceivers are 100GBASE-CWDM4 QSFP28 and 100GBASE-LR4 QSFP28. Common single-mode duplex LC patch cable can meet the cabling requirement of these two transceivers. The following figure shows that two 100GBASE-CWDM4 QSFP28 transceivers are connected with a single-mode duplex LC patch cable.

Cabling Solutions for 100GBASE-CWDM4 QSFP28 Transceiver

Conclusion

For 100G QSFP28 with MTP/MPO interface, you can choose MTP/MPO cable, but remember that 100GBASE-SR4 QSFP28 utilizes multimode cable while 100GBASE-PSM4 QSFP28 utilizes single-mode cable; for 100G QSFP28 with duplex LC interface, you can use duplex LC patch cable for long distance transmission. I hope after reading this article, you can get something helpful. The transceivers and fiber optic cables mentioned above can be found at FS.COM. For more details, you can visit our site.

Originally published at http://www.china-cable-suppliers.com/cabling-solutions-for-100g-qsfp28-transceiver.html

Overview of 100G Transceivers

There was a time when 10G to 40G migration was a hot spot, and as the only available 40G transceiver, 40G QSFP+ has occupied the major position in the market. However, the pace of development has never stopped and the demand for higher speed data transmission keeps growing. And now, many data center managers set their sight on 100G Ethernet. As an important component in 100G optical links, 100G transceivers gradually gain great popularity among data center managers. But unlike 40G transceiver, 100G transceiver has several types, such as CFP/CFP2/CFP4, CXP and QSFP28. How much do you know about them? This article is going to give an overview of 100G transceivers.

CFP/CFP2/CFP4

The letter “C” in CFP/CFP2/CFP4 stands for 100. The CFP transceiver is specified by MSA between competing manufacturers and it can support 100Gbps over both single-mode and multimode fiber. The electrical connection of a CFP uses 10 x 10G lanes in each direction (RX, TX) while the optical connection can support both 10 x 10G and 4 x 25G variants of 100G interconnects. With improvement in higher performance and higher density, CFP2 and CFP4 appeared. While electrical similar, they specify a form factor of 1/2 and 1/4 respectively in size of CFP. CFP, CFP2 and CFP4 modules are not interchangeable, but would be inter-operable at the optical interface with appropriate connectors.

CFP-CFP2-CFP4

Here is a table for you which shows five typical transceiver types. We can get that CFP-SR10-100G is structured with 24-fiber MTP connector interface, so it can be used with multimode MTP 24 to MTP 24 100g trunk cable to support 100G optical links over short distance; designed with LC duplex interface, CFP-LR4-100G, CFP-ER4-100G, CFP2-LR4-100G and CFP4-LR4-100G are used with LC duplex patch cable to support 100Gbps data rate over long distance.

CFP CFP2 CFP4 transceiver information

CXP

The CXP was created to satisfy the high-density requirements of the data center, targeting parallel interconnections for 12x QDR InfiniBand (120G), 100G, and proprietary links between systems collocated in the same facility. The CXP is 45 mm in length and 27 mm in width, making it slightly larger than an XFP. It includes 12 transmit and 12 receive channels in its compact package. This is achieved via a connector configuration similar to that of the CFP.

QSFP28

Similar to 40G QSFP+, 100G QSFP28 also offers four independent transmit and receiver channels, but each channel is capable of 25Gbps data rate for an aggregate data rate for 100Gbps. With an upgraded electrical interface to support signaling up to 25Gbps signals, the 100G QSFP28 makes it as easy to deploy 100G network as 10G networks. When compared to any of the other alternatives, the 100G QSFP28 increases density and decreases power and price per bit, but It has to noted that 100G QSFP28 has the same physical size as 40G QSFP+. Just like 40G QSFP+, 100G QSFP28 can be both deployed for short data transmission distance over multimode fiber and long data transmission distance over single mode fiber. For example, 100GBASE-PSM4 QSFP28 can be used with MTP single mode cable to support 100G data rate with link length up to 500 meters.

100G QSFP28 transceiveres

Conclusion

Now is the time of 100G Ethernet and 100G transceivers are indispensable to complete the 100G optical links. As there are various types of 100G transceivers available on the market, it is necessary to choose the best suitable one for your network deployment. As a professional manufacturer and supplier in optical communication industry, FS.COM provides a complete range of 100G transceivers to meet the potential requirements. The prices of all our 100G transceivers are much more affordable than the similar products in the market. Furthermore, with the mature coding technology, they can be compatible with many major brands. For more details, please visit our site.

Decoding Outer Jacket of MTP/MPO Cable

As high density cabling system has been widely deployed, MTP/MPO cable can be easily found in network deployment. But when you buy MTP/MPO cable in the online store, you must have been encountered with the situation where you not only have to select single-mode or multimode, 12 fibers or 24 fibers, but also have to consider the outer jacket of the cable which can protect the cable from damage. According to different cabling environment, there are different types of outer jackets, among which CMP, LSZH, CMR, CM are mostly used. How much do you know about them? This article will decode outer jacket of MTP/MPO cable and I hope it will be helpful for you when buying MTP/MPO cable.

MPO cabling

CMP

CMP (plenum-rated) cable complies the IEC (International Electrotechnical Commission) 60332-1 flammability standard. It has passed stringent burn testing and is suitable for installation into air plenum spaces, where environmental air is transported. Typical plenum spaces are between the structural ceiling and the drop ceiling or under a raised floor. CMP cable is designed to restrict flame propagation no more than five feet as well as limit the amount of smoke emitted during the fire. In spite of this, for safety reason, any high-voltage equipment is not allowed in plenum space because the fresh air can greatly increase the danger of rapid flame spreading if the equipment is on fire. Because it has high fire-retardant, it usually costs more than other types.

LSZH

The LSZH (low smoke zero halogen, also refers to LSOH or LS0H or LSFH or OHLS) has no exact IEC code equivalent. The LSZH cable is based on the compliance of IEC 60754 and IEC 61034. It is the newest in a family of ratings and it is sometimes refereed to as low toxicity cable. Containing no halogen type compounds that forms these toxic substances, LSZH cable gives of very little smoke and does not produce a dangerous gas/acid combination when exposed to flame. LSZH cable is suitable to be used in place where air circulation is poor such as aircraft, rail cars or ships. However, it is less fire-retardant than CMP.

CMR And CM

CMR (riser-rated) complies IEC 60332-3 standards. CMR cable is designed to prevent fires from spreading floor to floor in vertical installations. It can be used when cables need to be run between floors through risers or vertical shafts. CM (in-wall rated) cable is a general purpose type, which is used in cases where the fire code does not place any restrictions on cable type. Some examples are home or office environments for CPU to monitor connections.

Conclusion

To select a suitable MTP/MPO cable for your network deployment, it is necessary to learn about the relevant details of cable ratings, which is as important as other factors. As a professional MTP patch cable supplier, FS.COM provides high quality plenum and LSZH MTP/MPO patch cord at affordable prices. If you want to know more details, you can visit our site.

Focus on 100G QSFP28 Transceiver

To satisfy the increasing demand for high speed data transmission, network technology has been developed rapidly, from Fast Ethernet, Gigabit Ethernet to 10G, 40G, and even 100G Ethernet. And we know that 40G network technology has been widely applied for a long time. But now, the time of 100G is coming. Though for many data centers, 40G is enough for them now, the pace of development is unpredictable. In addition, some data centers have been already migrated to 100G and a range of 100G fiber optic transceivers are available on the market, among which 100G QSFP28 transceivers are considered to be the preference choice. This article will focus on 100G QSFP28 transceiver and help you choose a suitable 100G QSFP28 transceiver for your network deployment. First, let’s come to the basic knowledge of four 100G QSFP28 transceiver types.

100GBASE-SR4 QSFP28 Transceiver

100GBASE-SR4 QSFP28 transceiver offers four independent full-duplex transmit and receiver channels, each capable of running up to 25Gpbs data rate per channel. Like 40GBASE-SR4 QSFP+ transceiver, 100GBASE-SR4 QSFP28 transceiver is structured with 12 fiber MPO connector interface and it can support 100G data transmission with link length up to 70 meters over OM3 and 100 meters over OM4.

100GBASE-PSM4 QSFP28 Transceiver

100GBASE-PSM4 is defined by MSA and it uses four independent parallel lanes for each signal direction, with each lane carrying 25G data transmission. Terminated with 12 fiber MPO connector interface, it can support 100G data transmission with link length up to 500 meters over single-mode fiber.

100GBASE-CWDM4 QSFP28 Transceiver

100GBASE-CWDM4 QSFP28 transceiver complies with the requirement of CWDM4 MSA. Based on CWDM technology, the 100GBASE-CWDM4 QSFP28 transceiver uses four lanes of 25Gbps. On the transmit side, the four 25G optical signals are multiplexed while on the receive side, the four 25G optical signals are de-multiplexed. Terminated with duplex LC interface, it can support 100G data transmission with link length up to 2 kilometers over single-mode fiber.

100GBASE-LR4 QSFP28 Transceiver

100GBASE-LR4 QSFP28 transceiver uses the WDM technologies for four 25G lanes transmission and the four 25G optical signals are being transmitted over four different wavelengths. Like 40GBASE-LR4 QSFP+ transceiver, the 100GBASE-LR4 QSFP28 transceiver has duplex LC interface and it can support 100G dual-way data transmission with link length up to 10 kilometers over single-mode fiber.

Which One to Choose?

From the above content, we can easily find that among four types of 100G QSFP28 transceivers, there are not only differences but also similarities. For example, 100GBASE-SR4 QSFP28 and 100GBASE-PSM4 QSFP28 are with MTP/MPO interface, while 100GBASE-CWDM4 QSFP28 and 100GBASE-LR4 QSFP28 are with LC interface; 100GBASE-SR4 QSFP28 is suitable for for short distance over multimode fiber, while 100GBASE-PSM4 QSFP28, 100GBASE-CWDM4 QSFP28 and 100GBASE-LR4 QSFP28 are suitable for long distance over single-mode fiber. Which one to choose depends on your specific requirements for network deployment. To better distinguish these four 100G QSFP28 transceiver types, here is a table for you.

four 100G QSFP28 transceiver types

Conclusion

100G QSFP28 transceiver is designed for high port density with small compact size and low power consumption. As 100G Ethernet is an inevitable trend, 100G QSFP28 transceiver is the key for 100G migration. Therefore, it is necessary to have a basic knowledge about 100G QSFP28 transceiver. Apart from this, before you carry out your network deployment, choosing a suitable transceiver is essential. All four 100G QSFP28 transceiver types mentioned in this article can be found in FS.COM. If you want to know more details, please visit our site.

Originally published at http://www.china-cable-suppliers.com/focus-100g-qsfp28-transceiver.html

Duplex Connectivity And Parallel Connectivity in Data Center

As the size of data center becomes larger and larger, the network deployment in data center is more and more complicated. In data center, duplex connectivity and parallel connectivity are two of the most commonly deployed cabling system. However, to satisfy different requirements for cabling system, these two connectivity solutions are often utilized together. This article is going to introduce duplex connectivity and parallel connectivity in data center as well as their cross-connectivity solutions.

Duplex Connectivity

It is not difficult to understand that duplex connectivity is completed by two fibers. When it comes to duplex connectivity, what first appears in the mind is the LC duplex cable. According to TIA standard, there are two types of LC duplex patch cables: A-to-A patch cable and A-to-B patch cable. From the figure below we can see that the former one is a cross version while the latter one is a straight one. As is often the case, A-to-B patch cable is used in the cabling system.

A-to-A patch cable and A-to-B patch cable

As shown in the following figure, the duplex direct connectivity can be achieved by using A-to-B patch cable to connect two SFP+ transceivers with LC interface.

Duplex Direct Connectivity

Parallel Connectivity

Parallel connectivity is accomplished by two or more channels. It is usually used for high speed data transmission, such as MTP link for 40G and 100G network applications. For 40G network application, 12 fibers MTP trunk cable can be used, 4 fibers for Tx and 4 fibers for Rx; for 100G network application, 24 fibers MTP trunk cable can be used, 12 fibers for Tx and 12 fibers for Rx. As shown in the following figure, the parallel direct connectivity can be achieved by using 12 fibers MTP trunk cable to connect two QSFP+/QSFP28 transceivers with MTP interface.

Parallel Direct Connectivity

Duplex and Parallel Cross-connectivity

This type of connectivity solution is commonly used for conversion between 10G and 40G network. The following figure shows the simplest connectivity solution from parallel to duplex connectivity. To realize the conversion between 40G QSFP+ transceiver and SFP+ transceiver, MPO LC fanout cable is needed. The MPO LC fanout cable has four LC duplex connectors and the fibers will be paired in a specific way, assuring the proper polarity is maintained.

parallel to duplex connectivity

The following connectivity solution uses MTP adapter panel (Item 2) and MPO cassette (Item 4). It allows for patching on both ends of the fiber optic link.

Parallel to Duplex Interconnect

The following figure shows two duplex and parallel cross-connectivity solutions. The main difference for one above and one below is on the QSFP+ side. The below cross-connectivity solution is better for a greater distance between distribution areas where the trunk cables need to be protected from damage in a tray.

Duplex and Parallel Cross-connectivity

Conclusion

The connectivity solutions mentioned above are simple explanations to duplex connectivity and parallel connectivity in data center. It seems that different cabling environments require different connectivity solutions, and different fiber optic components will be utilized. As a professional fiber optics online store, FS.COM provides high quality fiber optic components at low price as well as suitable connectivity solution for your network deployment. If you want to know more details, you can visit our site.