A Closer Look at 40G QSFP+ SR4 Transceiver

As 40G network has been widely applied in today’s data center cabling system, 40G QSFP+ transceivers gain great popularity among data center managers. And for short data transmission distance, 40G QSFP+ SR4 transceiver is preferred. This article is going to focus on 40G QSFP+ SR4 transceiver and share several cabling solutions for 40G QSFP+ SR4 with you.

Overview of 40G QSFP+ SR4 Transceiver

40G QSFP+ SR4 transceiver is a parallel fiber optic transceiver which means it uses four fibers for transmitting and four fibers for receiving at the same time. Designed with MTP/MPO interface, 40G QSFP+ SR4 transceiver is used together with multimode fiber, such as OM3 and OM4. Working on wavelength of 850 nm, 40G QSFP+ SR4 transceiver can support 40G fiber optic transmission with the link length up to 100 meters over OM3 fiber and 150 meters over OM4 fiber. For application, 40G QSFP+ SR4 transceiver can be used for 10G to 40G and 40G to 40G connections. Here is a figure of 40G QSFP+ SR4 transceiver for you.

40G QSFP+ SR4 transceiver

10G to 40G Connection

Since 40G QSFP+ SR4 transceiver uses four independent full-duplex transmit and receiver channels, the 40G optical signal can be split into four 10G optic signals. Therefore, we can increase the fiber count at the 10G distribution end to realize 10G to 40G connection. As the following figure shows, we can use 12f MPO trunk cable and fiber enclosure. Four 10G SFP+ SR transceivers are inserted into 10G ports on one side, while one 40G QSFP+ SR4 transceiver is inserted into 40G port on the other side. Then the four 10G SFP+ SR transceivers are connected with four duplex LC patch cables which are plugged into LC ports on the front side of MPO fiber cassette inside the fiber enclosure, and the 40G QSFP+ SR4 transceiver is connected with 12f MPO trunk cable which is plugged into MTP/MPO port on the rear of MPO fiber cassette. Finally, the whole optical link is completed.

40G QSFP+ SR4 transceiver for 10G to 40G connectionA

We can also use MPO to LC fanout and MTP fiber patch enclosure which includes MTP fiber adapter panels. This cabling solution is similar to the previous one, but the difference is that the four 10G SFP+ SR transceivers are connected with MPO to LC fanout which is plugged into MTP/MPO port on the MTP fiber patch enclosure. The scenario is shown in the following figure.

40G QSFP+ SR4 transceiver for 10G to 40G connectionB

40G to 40G Connection

The following figure shows the simplest scenario for 40G to 40G connection. Two 40G QSFP+ SR4 transceivers are separately inserted into two 40G switches. Then the two 40G QSFP+ SR4 transceivers are connected by 12f MPO trunk cable.

40G QSFP+ SR4 transceiver for 40G to 40G connectionA

We can also use MTP fiber patch enclosure to achieve better cable management and higher density cabling. The scenario is shown in the following figure. With the use of MTP fiber enclosure, cable management for 40G to 40G connection could be easier. A 48-port 1U rack mount MTP fiber patch enclosure includes up to four 12-port MTP fiber adapter panels with MPO MTP fiber optical adapters on it, here is a figure for you.

40G QSFP+ SR4 transceiver for 40G to 40G connectionB

Conclusion

Designed with parallel transmission mode, 40G QSFP+ SR4 transceiver has a wide range of cabling applications with great flexibility. The cabling solutions mentioned above are just several commonly used ones. As for detailed cabling solutions for 40QSFP+ SR4 transceiver, it is suggested to depend on the practical applications and cabling environments. I hope after reading this article, you can learn more about 40G QSFP+ SR4 transceiver.

Can 40GBASE-LR4 Be Used for 4x10G?

We know that 40GBASE-SR4 QSFP+ transceiver can be used for 4x10G SFP+ connections, because it offers 4 independent transmit and receive channels, each capable of 10G operation for an aggregate data rate of 40G over 100 meters of OM3 MMF or 150 meters of OM4 MMF. However, for 40GBASE-LR4 QSFP+ transceiver, it is commonly utilized over long transmission distance of SMF in 40G network applications. Can 40GBASE-LR4 be used for 4x10G? The answer depends and this article will focus on this question.

40GBASE-LR4 CWDM QSFP+ Transceiver Cannot Be Used for 4x10G

The 40GBASE-LR4 CWDM QSFP+ transceiver, such as QSFP-40GE-LR4, is compliant to 40GBASE-LR4 of the IEEE P802.3ba standard. It contains a duplex LC connector for the optical interface. The maximum transmission distance of the transceiver is 10km over SMF. In the transmit side, the transceiver converts 4 inputs channels of 10G electrical data to 4 CWDM optical signals by a driven 4-wavelength distributed feedback (DFB) laser array, and then multiplexes them into a single channel for 40G optical transmission, propagating out of the transmitter module from the SMF. Reversely, the receiver side accepts the 40G CWDM optical signals input, and demultiplexes it into 4 individual 10G channels with different wavelengths. Each wavelength channel is collected by a discrete photo diode and output as electric data after being amplified by a transimpedance amplifier (TIA). Therefore, 40GBASE-LR4 CWDM QSFP+ transceiver cannot be used for 4x10G. It cannot be split into 4x10G, because it uses 4 wavelengths on a pair of single-mode fiber with LC duplex connector, and does not allow itself to split into 4 pairs without substantial complexity to split out the wavelengths.

Working Principle of 40GBASE-LR4 CWDM QSFP+ Transceiver

40GBASE-LR4 PSM QSFP+ Transceiver Can Be Used for 4x10G

The 40GBASE-LR4 PSM QSFP+ transceiver is a parallel single-mode optical transceiver with an MTP/MPO fiber ribbon connector. It also offers 4 independent transmit and receive channels, each capable of 10G operation for an aggregate data rate of 40G on 10km of single-mode fiber. The transmitter side accepts electrical input signals compatible with common mode logic (CML) levels. All input data signals are differential and internally terminated. The receiver side converts parallel optical input signals via a photo detector array into parallel electrical output signals. That’s to say, the parallel optical signals are transmitted parallelly through 8 single mode fibers. As a result, 40GBASE-LR4 PSM QSFP+ transceiver can be used for 4x10G, because it uses parallel (ribbon) fiber with MTP/MPO connector, which allows the creation of 4 fiber pairs.

Working Principle of 40GBASE-LR4 PSM QSFP+ Transceiver

Note: From an optical transceiver module structure viewpoint, PSM uses a single uncooled CW laser which splits its output power into four integrated silicon modulators. Therefore, it allows for splitting into 4x10G (single-mode).

Conclusion

In a world, the answer of question “Can 40GBASE-LR4 be used for 4x10G?” depends. The 40GBASE-LR4 CWDM QSFP+ transceiver cannot be split into 4x10G, while for 40GBASE-LR4 PSM QSFP+ transceiver, it cab be used for 4x10G. To put it simply, 40G QSFP+ transceiver which is with MTP/MPO interface can be used for 4x10G connections, otherwise, it can only support 40G link. The 40G QSFP+ transceivers mentioned above can be found in FS.COM, if you want to know more details, please visit our site.

Originally published at http://www.china-cable-suppliers.com/can-40gbase-lr4-used-4x10g.html

Three Types of 40G QSFP+ Transceivers for Long Distance Transmission

Nowadays, people have access to data at all times and at everywhere, which gives rise to the rapid development of big data technology. During the application of big data technology, transceiver has become an indispensable component, which can help executives to get their data in real-time. Recently, 40GbE network has replaced 10G Ethernet network and has been used worldwide. For 40GbE network deployment, high-density cabling is the basic requirement. Also, optical components for high-speed data transmission are necessary. This article aims to introduce three types of 40G QSFP+ transceivers for long distance transmission—QSFP-4X10GE-IR, QSFP-40G-PLRL4 and QSFP-4X10G-LR-S.

40G QSFP+ transceiver

QSFP-4X10GE-IR Transceiver

Designed with MTP interface, the parallel QSFP-4X10GE-IR transceiver offers 4 independent transmit and receive channels, each capable of 10Gbps operation. It utilizes 12-ribbon single-mode fiber cable with female MTP/MPO connector to realize 40Gbps data link with transmission distances up to 1 km.

QSFP-40G-PLRL4 Transceiver

The QSFP-40G-PLRL4 transceiver uses 12-fiber MTP interface to achieve 40Gbps parallel transmission, supporting maximum data link lengths up to 1.4 km. The cable type required for QSFP-40G-PLRL4 transceiver is an APC (angle polished connector) single-mode 12-fiber MTP cable. APC is the only available type for single-mode MTP-12 fiber.

QSFP-4X10G-LR-S Transceiver

The QSFP-4X10G-LR-S transceiver is a parallel 40Gbps QSFP+ optical module. It supports link lengths of up to 10 km on G.652 single-mode fiber. It enables high-bandwidth 40G optical links over 12-fiber parallel fiber terminated with MPO/MTP female connector. It can also be used in a 4x10G mode for interoperability with 10GBASE-LR interfaces up to 10 km.

When reading this, you may find that all these three types of 40G transceivers are designed with MTP interface and use parallel transmission. In parallel transmission, data signals are sent sequentially on the same channel. In addition, they all use 1310nm wavelength and can transfer data signals up to at least 1 km. What’s more, they are compatible with the Small Form Factor Pluggable Multi-Sourcing Agreement (MSA) and they support Digital optical monitoring (DOM).

Working Principle

Because the structures of these three types of 40G transceivers are similar, their working principles are similar, too. The single-mode cable terminated with 12-fiber MTP connector plugged into the 40G transceiver carries the 40G signal over only 8 of the 12 fibers, remaining 4 fibers unused. The 8 used fibers are mapped as 4x10G Tx and Rx pairs. We can easily understand the working principle of these three types of 40G QSFP+ transceivers from the figure below. In the transmit side, the transmitter converts parallel electrical input signals into parallel optical signals through the use of a laser array. Then the parallel optical signals are transmitted parallelly through the single-mode fiber ribbon terminated with MTP/MPO connector. While in the receive side, the receiver converts parallel optical input signals via a photo detector array into parallel electrical output signals.

working principle of 40G QSFP+ transceiver

Application

Many data centers are in the process of 10G to 40G migration. To make migration path smooth, we can use 40G transceivers together with MTP cable. Take QSFP-40G-PLRL4 transceiver for example, we can simply use MTP-LC harness cable to connect one QSFP-40G-PLRL4 transceiver and four 10GBASE-LR SFP+ transceivers. Here is a figure for you to have a better understanding of the connectivity. In addition, for 40 connectivity, we can use MTP trunk cable to connect two QSFP-40G-PLRL4 transceivers to make the optical links. Using 40G QSFP+ transceiver for high-speed long distance transmission over single-mode fiber is a cost-effective solution.

QSFP-40G-PLRL4 transceiver for 10G to 40G connectivity

Conclusion

With special structures, MTP components are popular with data center managers for fast installation, high density and high performance cabling. QSFP-4X10GE-IR, QSFP-40G-PLRL4 and QSFP-4X10G-LR-S these three 40G QSFP+ transceivers have special interface designs which can be compatible with single-mode MTP connector and support long distance transmission. During the deployment of 40G QSFP+ module, selecting proper MTP assemblies are also essential to successfully accomplish the link. The optical components mentioned above can be found in FS.COM. If you want to know more details, please visit our site.

Originally published at http://www.fiber-optic-cable-sale.com/some-thoughts-required-before-mtp-cabling.html

40G QSFP+ – A Cost-effective Transceiver Solution

Data transmission with higher density and bandwidth has become the trend under today’s networking environment. And for better network performance, the existing bandwidth has been generated to 40Gbps. Among various network devices designed for 40 Gigabit Ethernet (GbE) links, 40G QSFP+ transceivers play an important role in driving the bandwidth to a mounting point. This passage is going to focus on this cost-effective transceiver. First, let’s move on to the overview of 40G QSFP+.

Overview of 40G QSFP+ Transceiver

The 40G QSFP+ (Quad Small Form-Factor Pluggable Plus) transceiver is a compact, hot-pluggable, parallel fiber optical transceiver with four independent optical transmit and four receive channels. Each channel is able to transfer data at 10Gbps. Thus, a QSFP+ transceiver with Four high-speed channels can support data rates up to 40Gbps and it supports Ethernet, Fibre Channel, InfiniBand and SONET/SDH standards. In addition, 40G QSFP+ is primarily used in switches, routers, and data center equipment where it provides higher density than SFP+ transceiver.

Three types of 40G QSFP+ Transceiver

With the development of the SFF-8436 Multi Source Agreement, many vendors are now offering a variety of IEEE- and MSA-compliant QSFP+ devices for fiber networks. And there are three basic 40G QSFP+ transceivers for this standard: 40G LR4 QSFP+ transceiver, 40G SR4 QSFP+ transceiver and 40G LR4 parallel single mode (PSM) transceiver.

40G LR4 QSFP+ Transceiver

The 40G LR4 QSFP+ Transceiver converts 4 inputs channels of 10Gbps electrical data to 4 CWDM optical signals, and multiplexes them into a single channel for 40Gbps optical transmission. Together with duplex LC connectors, 40G LR4 QSFP+ transceiver can support an optical link length up to 10 kilometers over the single mode fiber.

We can easily understand the working principle of 40G LR4 QSFP+ transceiver from the figure below. In the transmit side, four 10Gbps serial data streams at different wavelengths are passed to laser drivers. Then four data streams are optically multiplexed to a single mode fiber through LC connector. In the receive side, four 10Gbps optical data streams are de-multiplexed into four individual data streams by the optical de-multiplexer. And each data stream is collected by a PIN photodiode /TIA array and passed to an output driver.

Working Principle of 40G LR4 QSFP+ Transceiver

40G SR4 QSFP+ Transceiver

The 40G SR4 QSFP+ Transceiver provides a high-bandwidth 40G optical connection over fiber ribbon terminated with MPO/MTP connectors. Unlike the 40G LR4 QSFP+ transceiver, this kind of transceiveris used together with multi-mode fiber, supporting with a link length up to 100 meters on OM3 cable and 150 meters on OM4 cable.

We can easily understand the working principle of 40G SR4 QSFP+ transceiver from the figure below. The transmitter converts parallel electrical input signals into parallel optical signals through the use of a laser array. Then the parallel optical signals are transmitted parallelly through the multi-mode fiber ribbon. Reversely, the receiver converts parallel optical input signals via a photo detector array into parallel electrical output signals.

Working Principle of 40G SR4 QSFP+ Transceiver

40G LR4 Parallel Single Mode (PSM) Transceiver

The 40G LR4 PSM transceiver is designed with QSFP+ form factor, optical/electrical connection and digital diagnostic interface according to the QSFP+ MSA. As a highly integrated 4-channel optical module, this kind of transceiver can provide increased port density and total system cost savings. 40G LR4 PSM transceiver supports up to 10 kilometers over single mode fiber through MPO/MTP fiber ribbon connectors.

From the figure below, we can easily understand the working principle of 40G LR4 PSM transceiver which is nearly the same as that of 40G SR4 QSFP+ transceiver. The transmitter converts parallel electrical input signals into parallel optical signals and the receiver converts parallel optical input signals via a photo detector array into parallel electrical output signals. The difference is that the cable used in this link is single mode ribbon fiber cable. That’s to say, the parallel optical signals are transmitted parallelly through 8 single mode fibers.

When reading this, you may have found that both 40G LR4 QSFP+ transceiver and 40G QSFP+ PSM transceiver can support the maximum transmission distance of 10km. The obvious difference between these two transceivers is that the former establishes 40G links over 2 optical SMFs with a duplex LC connector, while the latter achieves 40G links via 8 optical SMFs with a MTP/MPO fiber ribbon connector. And we can easily find that 40G LR4 PSM transceiver costs more than 40G LR4 transceiver which uses only 2 single mode fibers to support an optical link. Besides, in the data center fiber infrastructure, the patch panel has to be changed to accommodate MTP cables, which would cost more than LC connectors and regular SMF cables.

Working Principle of 40G LR4 PSM Transceiver

Conclusion

From the introduction above, 40G SR4 QSFP+ transceiver is suitable for short-distance transmissions. So it is often used in data centers to interconnect two Ethernet switches with 12 lane ribbon OM3/OM4 cables. While 40G LR4 QSFP+ transceiver and 40G LR4 PSM transceiver are often used in long-distance transmission applications. I hope this passage can help you know more about 40G QSFP+ and choose a suitable optical transceiver module according to your need.

Learn More About SFP+ Modules

With the rapid development of network, 10 Gigabit Ethernet has been widely used in various fields. Therefore, SFP+, a kind of optical communication product which can support 10 Gigabit Ethernet, has gained much attention among data network users and vendors. Take Finisar 10G SFP+ as an example. Finisar is one of the world’s largest telecom suppliers and wins large market share with its SFP+ transceivers. The Finisar Compatible 10GBASE-SR SFP+ with 850nm wavelength and LC duplex can transmit at the data rate up to 10 Gbps. It is obvious that this kind of product meets the requirement of high transmission data rate in application. Is this the only reason why SFP+ becomes popular? The answer is “Definitely not”. This passage will guide you to learn more about SFP+ modules.

Overview of SFP+ Module

SFP+ module, or SFP Plus, is a hot-pluggable, small-footprint optical transceiver that supports data rate up to 10 Gbit/s. It also supports 8 Gbit/s Fibre Channel, 10 Gigabit Ethernet and Optical Transport Network standard OTU2. In addition, as an enhanced version of SFP module, SFP+ module is interchangeable with SFP module and can be used in the same cages as SFP module, allowing the equipment manufacturer to reuse existing physical designs for high-density port switches and modular line cards. Here is a picture of SFP+ module.

SFP Plus

Features

Besides being able to transmit at data rate up to 10Gbps, SFP+ is also characterized by other features, such as smaller in size, lower in cost and more efficient in the application.

Smaller

SFP+ modules leave more circuitry to be implemented on the host board instead of inside the module. For example, SFP+ module significantly simplifies the functionality of the 10G optical module by moving such functions as clock and data recovery (CDR), electronic dispersion compensation (EDC), 10G SERDES, and signal conditioning that traditionally resided inside the XAUI-based module into 10GbE PHY devices and line cards. As a result, the modules are smaller. The figure and table below shows the comparison between X2, XFP and SFP+.

Comparison Between X2, XFP and SFP+

Comparison Between X2, XFP and SFP+ Shown in the Table

Cheaper

From the figure and table above, we can easily find that SFP+ module form factor is 30% smaller in comparison to X2 or XFP modules. In addition, it uses less power, requires fewer components, and is less expensive than the 10-Gigabit small form-factor pluggable module (XFP) form factor, which was already smaller and used less power than the XAUI-based XENPAK and X2 form factors. Here is a table showing the price of Cisco 10Gbit/s X2, XFP, XENPAK and SFP+.

The Price of Cisco 10Gbit/s X2, XFP, XENPAK and SFP+

More Efficient

Each SFP+ module houses an optical transmitter and receiver. One end of the module is an SERDES framer interface (SFI) serial interconnect, which handles differential signals up to 10 Gbps; while the other end is an optical connection that complies with the 10GbE and 8GFC standards. SFP+ modules do only optical to electrical conversion, no clock and data recovery, putting a higher burden on the host’s channel equalization. And it has become the most popular module on 10GE systems for allowing higher port density.

Application

From the beginning of the passage, we have known that SFP+ is widely used in 10 Gigabit Ethernet applications. In fact, SFP+ module has different types to meet different requirements in the application. For example, SFP-10G-SR (shown in the figure below) uses 850 nm lasers ad it is suitable for short reach links in high-speed interconnect application. Using 2000 MHz*km MMF (OM3), it is possible to reach up to 300m link lengths; while using 4700 MHz*km MMF (OM4), it is possible to reach up to 400m link lengths. Besides SFP-10G-SR, there are many other SFP+ module types, such as SFP-10G-USR, SFP-10G-LR, SFP-10G-ER and so on. By using different wavelengths, they are separately suitable for the ultra short reach, long reach, extended reach links in applications.

SFP-10G-SR

SFP+ can also be applied to Direct Attach Cable. As a cost-effective solution for short reach 10 Gigabit Ethernet application, SFP+ Direct Attach Copper Cable, a high speed copper directly connected with two SFP+ housings on either end, is widely used in high-speed interconnect applications such as high-performance computing (HPC), enterprise networking including top-of-rack switching and network storage markets.

Conclusion

As a new generation of small-factor form, hot-pluggable optic transceiver, SFP+ has been optimized in several aspects and can meet the requirement for high transmission data rate in the applications of telecommunication equipment, data center cabling infrastructure. I hope after reading this passage, you can have a thorough understanding of SFP+ module.

Introduction to BiDi SFP

SFP, a compact and hot-pluggable transceiver, is popular in telecommunication and data communication. As we know, most SFP transceivers utilize two fibers to achieve the data transmission. Nowadays, more and more people realize that the cost of fiber counts accounts for a large proportion, so it is necessary to find a cost-effective solution in the communication field. As an optimized version of SFP transceiver, BiDi SFP may be a good option. The following passage will focus on the overview, connection method and application of BiDi SFP.

Overview of BiDi SFP

BiDi SFP is a compact transceiver module which utilizes WDM (Wavelength Division Multiplexing) technology. The technology is increasingly popular among telecommunication and service operators because it can mix and transmit multiple wavelengths simultaneously over same unique fiber strand. With the use of this technology, BiDi SFP is specially designed for the high performance integrated duplex data link over a single optical fiber. BiDi SFP is compliant with the SFP multi-source agreement (MSA), and it interfaces a network device motherboard (for a switch, router, media converter or similar device) to a fiber optic or copper networking cable. Here is a figure of BiDi SFP, and it can help you get a general understanding of BiDi SFP’s connection method before we move on.

Structure of BiDi SFP Transceiver

Connection Method

BiDi SFP uses only one port fitted with an integral WDM coupler, also known as diplexer. The WDM coupler can combine and separate data transmitted over a single fiber based on different wavelengths of the light. For this reason, BiDi transceivers are also referred as WDM transceivers. To work effectively, BiDi SFP must be deployed in matched pairs with the opposite wavelength together. Here is a figure to help you get intuitive understanding of this. If paired BiDi transceivers are being used to connect Device A (Upstream) and Device B (Downstream), then Transceiver A’s diplexer must have a receiving wavelength of 1550nm and a transmit wavelength of 1310nm; Transceiver B’s diplexer must have a receiving wavelength of 1310nm and a transmit wavelength of 1550nm.

BiDi SFP Connection Method

Application

At present, the BiDi SFP is usually used in FTTx deployment P2P (point to point) connection. In a FTTH deployment, optical fibers are used directly to connect the central office and the customer premises equipment. But because the use of P2P structure, the customer premises equipment has to be connected to the central office on a dedicated fiber. BiDi SFP can realize a bi-directional communication on a single fiber by using WDM. This makes the connection between central office and customer premises equipment become more simple. In addition, BiDi SFP can be also applied in WDM fast Ethernet links, metropolitan area network, and inter-system communication between servers, switches, routers, OADM, etc.

Conclusion

With the increasing demand of high density and reliability of data transmission over long distance, more and more optical communication products appear on the market. The deployment of BiDi SFP instantly doubles the bandwidth capacity of the existing optical fiber infrastructure which can be a cost-effective solution in the applications. BiDi SFP is a popular industry format jointly developed and supported by many network component vendors mainly because it saves the cost of fiber. It is certain to be the first option when choosing fiber optic transceiver applied to large data rate and long distance data transmission.

How Much Do You Know About CWDM SFP?

Have you noticed that there are some SFP modules with colorful markings on the market? For SFP, we are not unfamiliar. SFP (Small Form-Factor Pluggable) is a compact, hot-pluggable transceiver used for both telecommunication and data communication applications. But do you know why they are designed with different colors?

CWDM SFPs

These colorful SFP modules are called WDM (Wavelength Division Multiplexing) SFPs. WDM is a technology which combines two or more kinds of optical signals at different wavelengths and transmits them on a single optical fiber. By using WDM technology, SFP module can transmit signals at different wavelengths, which are identified by different colors. WDM SFPs can be divided into two basic types. One is CWDM (Coarse Wavelength Division Multiplexing) SFP, and the other one is DWDM (Dense Wavelength Division Multiplexing) SFP. The following passage is mainly about CWDM SFP.

Overview of CWDM SFP

CWDM SFP is a kind of optical transceiver which uses CWDM technology. Similar with traditional SFP module, CWDM SFP is also a hot-pluggable transceiver that interfaces a network device port (of a switch, router, media converter or similar device) to a fiber optic networking cable.

Generally speaking, CWDM SFP modules come in 8 wavelengths that range from 1470 nm to 1610 nm. Through the color markings on the devices, it is easy to identify the wavelength to which the Gigabit Ethernet channel is mapped. That is why SFP modules are designed with different colors. The following table lists the CWDM SFP modules with their wavelengths and color codes.

CWDM SFPs with with their wavelengths and color codes

In addition, CWDM SFP is a compatible transceiver which provides data rates from 100 Mbps up to 4 Gbps, and reach a transmission distance at 20 to 40km, 40 to 80km and 80 to 120km. CWDM SFP modules also feature digital diagnostics, also known as digital optical monitoring (DOM), which is supported by the majority of switch and router OEMs in their operating system software.

Application

CWDM SFP is a MSA standard build and it is designed for operations in Metro Access Rings and Point-to-Point networks using Synchronous Optical Network (SONET), SDH (Synchronous Digital Hierarchy), Gigabit Ethernet and Fiber Channel networking equipment. For it is low in cost, CWDM SFP can be regarded as a convenient and cost-effective solution for the adoption of Gigabit Ethernet and Fibre Channel (FC) in campus, data-center, and metropolitan-area access networks.

Comparison With DWDM SFP

DWDM (Dense Wavelength-Division Multiplexing) SFP transceivers are used as part of a DWDM optical network to provide high-capacity bandwidth across an optical fiber network, which is a high performance, cost effective module for serial optical data communication applications up to 4.25Gb/s. From a low cost point of view, CWDM SFP module is inexpensive than DWDM SFP. For other aspects, the key in selecting CWDM or DWDM SFP lies in the difference between CWDM and DWDM. They refer to different methods of splitting up the light. For example, CWDM uses broader spacing between channels, allowing for inexpensive SFPs, while DWDM uses denser channel spacing, which allows for more wavelengths to be used on a single fiber. DWDM is typically used in large optical networks over longer distance. Therefore, DWDM SFP module is the ideal choice for SFP modules over long distance and with better scalability.

Conclusion

Data communication and fiber optical network develop rapidly. During the process, some problems occur which push forward the improvement of the products. SFP modules, essentially just completed the converted of data between different media, can realize the connection between two switches or computers within a long distance. CWDM technology is an effective way to meet the rapidly increasing demand of bandwidth in transmission network, and it can provide a cost-effective solution for high capacity in metropolitan area network and local area network. As a functional and economical optical communication product, CWDM SFP, combined with the advantages of them, becomes more and more popular with users and applied to various fields.