Applications of FHX Ultra MTP/MPO Cassettes

Nowadays, data communication technology has developed rapidly. To achieve high speed transmission, it is very common to see complex cabling system in data center, which may even include thousands of fibers. Under such circumstances, saving space in data center is a critical issue. Therefore, fiber optic components or cabling solutions which are characterized by high density will gain the popularity among data center managers. MTP component is such one that can satisfy the requirement. And this article is going to introduce FHX ultra MTP/MPO cassettes and their applications in data center.

Overview of FHX Ultra MTP/MPO Cassettes

MTP/MPO cassette is widely used for high-density cabling in data centers. It is pre-terminated and pre-tested enclosed unit which can provide secure transition between MTP and LC, SC or MTP discrete connectors. And it is usually structured with LC, SC or MTP adapters on the front side of the cassette and MTP adapters at the rear of the cassette. FHX Ultra MTP/MPO cassette has three types: FHX ultra 8F MTP-LC cassette, FHX 12F MTP-LC cassette and FHX MTP conversion module. Here is a figure for you to have a better understanding of these three types of MTP cassettes.

FHX Ultra MTP MPO Cassettes
Applications of FHX Ultra MTP/MPO Cassettes

For application, MTP cassette can be easily found in 10G, 40G and 100G network applications in data center.

FHX Ultra 8F MTP-LC Cassette

Since both FHX ultra 8F MTP-LC cassette and FHX 12F MTP-LC cassette serve to realize the transition from small diameter ribbon cables terminated with MTP connector(s) to the more common LC interfaces used on the transceiver terminal equipment, this part will take FHX ultra 8F MTP-LC cassette as an example. The FHX ultra 8F MTP-LC cassette is structured with four LC duplex (8-fiber) adapters on the front side of the cassette and one 12-fiber MTP adapter at the rear of the cassette, and it is often used for 10G to 40G connection. As the following figure shows, we can also add FHX ultra enclosure and FHX MTP adapter panel to the cabling solution. From the left to the right, four 10G SFP+ transceivers are plugged into four 10G ports on the 10G switch. Then they are connected to LC adapters on the FHX ultra 8F MTP-LC cassette through four LC duplex patch cables. The cassette is installed in the FHX ultra enclosure. One MTP trunk cable connects two MTP adapters respectively on the rear of the cassette and MTP adapter panel. Finally, the 40G QSFP+ transceiver on the 40G switch is connected with MTP adapter on MTP adapter panel through another MTP trunk cable. In this application, 100% fiber utilization is realized. What’s more, the 1U fiber enclosure can house 18 x 8F FHX cassettes or 12 x 12F FHX cassettes, with the total fiber capacity up to 144 fibers for LC interface, greatly saving cabling density.

application of FHX ultra 8F MTP-LC cassette
FHX MTP Conversion Module

The FHX MTP conversion module has several kinds, this part will take 3x MTP-8 to 2x MTP-12 (24-fiber) conversion module as an example. This kind of FHX MTP conversion module is structured with three 8-fiber MTP adapters on the front side of the module and two 12-fiber MTP adapters at the rear of the module. We can use FHX ultra enclosure to hold MTP conversion module. The following figure shows the cabling solution for 120G to 120G connection. Three 40G QSFP+ transceivers are respectively plugged into 40G ports on three 40G switches on both sides. Then the three 40G QSFP+ transceivers are connected with three 8-fiber MTP adapters on the front side of the module through three MTP trunk cables. Finally, two 12-fiber MTP adapters at the rear of two respectively modules are connected through two MTP trunk cables. This cabling solution utilize Based-8 MTP cabling system and achieves 100% fiber utilization. With the use of 1U FHX ultra enclosure, twelve 3x MTP-8 to 2x MTP-12 conversion module can be used in this cabling solution, which creates a 33% spacing-saving upgrading path.

application of FHX MTP conversion module
Conclusion

The FHX ultra MTP/MPO cassettes can not only meet the need for saving space in data center cabling, but also realize 100% fiber utilization during the cabling. With superior best-in-class features, FS.COM FHX ultra MTP/MPO cassettes can offer you cost-effective, simple 10G to 40G, 40G to 40G, 40G to 100G or 120G to 120G cabling solutions and ensures high performance at the same time. For more details, please visit our site.

Advertisements

Talk About Base-8 Connectivity and Base-12 Connectivity

The technology behind data center switches, servers and transceivers is changing quickly to accommodate the ever-increasing adoption of cloud computing, along with a growing demand for high-bandwidth applications. As 40G network has been utilized by many data centers, two types of cabling solutions are popular among data center managers—Base-8 connectivity and Base-12 connectivity. How much do you know about these two cabling solutions? This article aims to talk about Base-8 connectivity and Base-12 connectivity for network applications in detail.

Base-8 Connectivity

Base-8 connectivity builds optical links on increments of the number “eight”. In Base-8 connectivity, 8-fiber MTP trunk cable, 24-fiber or 32-fiber MTP trunk cable can be used to transmit data. Base-8 connectivity provides the most future-ready solution to support high data rate transmission requirements, and the benefits are clear. It allows for 100% fiber utilization for 4-channel (SR4, PSM4, etc.) and 8-channel (SR8, LR8) applications. In addition, it eliminates conversion modules which can reduce link attenuation by 50% and enables longer parallel link distances. Base-8 connectivity will be the cleanest path from 10G to 40G and beyond regardless of protocol.

Application of Base-8 Connectivity

Many data centers are in the process of 10G to 40G migration, and Base-8 connectivity can provide a simple and reliable solution—using the MTP/MPO breakout cable. As shown in the following picture, one 40GBASE-SR4 QSFP+ transceiver is plugged in the QSFP+ interface on the 40G switch on one side, while four 10GBASE-SR SFP+ transceivers are plugged in the SFP+ interfaces on the 10G switch on the other side. Then the MTP to LC breakout cable connects the 40GBASE-SR4 QSFP+ transceiver with the four 10GBASE-SR SFP+ transceivers. Finally, the data can be transmitted from 10G switch to 40G switch through the MTP to LC breakout cable smoothly.

application of Base-8 connectivity

Base-12 Connectivity

Base-12 connectivity makes use of fiber optical links based on increments of 12 fibers. And 12-fiber or 24-fiber MTP connector assemblies are usually used to accomplish the links, such as 12-fiber or 24-fiber MTP trunk cable. When using Base-12 connectivity, a larger number of fibers can be installed quickly because the 12-fiber or 24-fiber MTP connector can provide higher fiber cabling density. However, in Base-12 connectivity, four fibers for transmit and four fibers for receive, leaving four fibers unused per connection. In spite of this, Base-12 connectivity in some cases may still be more cost-effective which can meet the newer 40G/100G standard format.

Application of Base-12 Connectivity

For 40G network, 12-fiber MTP trunk cable can provide the simplest way. As shown in the following picture, two 40GBASE-SR4 QSFP+ transceivers are separately plugged in the QSFP+ interface on the 40G switch on each side. Then the 12-fiber MTP trunk cable connects the two 40GBASE-SR4 QSFP+ transceivers. Finally, the 40G optical link is accomplished.

application of Base-12 connectivity

Conclusion

Both Base-8 connectivity and Base-12 connectivity have their own benefits. Though Base-8 can realize 100% fiber utilization in cabling system, it is not an universal solution. While Base-12 connectivity in some cases may still be more cost-effective. As for which one to choose, it depends on the requirements of the network deployment. I hope this article can help you have a better understanding of this two cabling solutions.

Originally published at http://www.china-cable-suppliers.com/talk-about-base-8-connectivity-and-base-12-connectivity.html

MTP Trunks and Breakouts for 10G to 40G Migration

With the rapid development of datacom, 10Gbps is no longer enough for massive data transmission. Many data center managers set their sights on 10G to 40G migration. However, it is not possible to upgrade all 10G equipment in the cabling system because of the high cost. Therefore, finding a cost-effective solution for the migration has become a hotspot. We know that MTP cable gains great popularity among data center managers since it can provide fast installation, high density and high performance cabling for data centers. By using MTP trunk cable and MTP breakout cable respectively, there are two solutions for 10G to 40G migration. And this article is going to share these two solutions with you: MTP trunks and MTP breakouts.

Overview of MTP Trunk Cable and MTP Breakout Cable

Before we come to the migration solutions, let’s have a brief overview of MTP trunk cable and MTP breakout cable. MTP trunk cable, terminated with MTP connectors at both ends, can create the permanent fiber links between panels in a structured environment. It is typically used as backbone or horizontal cable interconnections. With efficient plug and play architecture, MTP trunk cable can greatly reduce the installation and maintenance costs. In networking applications, 12-fiber and 24-fiber MTP trunk cables are commonly used: 12-fiber MTP trunk cable is normally for 40G Ethernet network, while 24-fiber MTP trunk cable is normally for 100G Ethernet network.Here is a figure of MTO trunk cables for you.

MTP trunk cables

MTP breakout cable, also named MTP fanout cable or MTP harness cable, is terminated with a male/female MTP connector on one side and several duplex LC/SC connectors on the other side, providing a transmission from multi-fiber cables to individual fibers or duplex connectors. It is typically used to connect equipment in racks to MTP terminated backbone cables. MTP breakout cable is designed for high density applications which require high performance and speedy installation without on-site termination.Here is a figure of MTP breakout cables for you.

MTP breakout cables

MTP Trunks for 10G to 40G Migration

For 10G to 40G migration, you can use the MTP trunk cable. Also, MTP fiber patch panel can be used to fulfill the data transmission link. With forty-eight LC duplex adapters on the front and twelve 8-fiber MTP adapters on the rear, the high density 40G QSFP+ breakout patch panel acts as a middleman between 10G to 40G connection. The figure below shows the connectivity method. From the left to the right, four 10G SFP+ transceivers are plugged in the SFP+ interfaces on the switch on one side, then the SFP+ transceivers are connected with the front LC ports of MTP fiber patch panel by LC duplex patch cables. With the use of MTP trunk cable, the rear MTP ports of MTP fiber patch panel are linked with one 40G QSFP+ transceiver. Finally, the whole optical link is accomplished by plugging the 40G QSFP+ transceiver in the QSFP+ interface on the switch on the other side.

MTP Trunks for 10G to 40G Migration

MTP Breakouts for 10G to 40G Migration

For 10G to 40G migration, using the MTP breakout cable is a simple way. As shown in the following picture, four 10G SFP+ transceivers are plugged in the SFP+ interfaces on the switch on one side, while one 40G QSFP+ transceiver is plugged in the QSFP+ interface on the switch on the other side. Then the MTP to LC breakout cable connects the four 10G SFP+ transceivers with the 40G QSFP+ transceiver. Finally, the data can be transmitted from 10G switch to 40G switch through the MTP to LC breakout cable smoothly.

MTP Breakouts for 10G to 40G Migration

Conclusion

For data centers which are in the process of 10G to 40G migration, connecting 40GbE equipment with existing 10GbE equipment is what must be experienced. In addition, carrying out the migration smoothly is the greatest concern of many data center managers. In order to solve the problem, MTP trunk cable and MTP breakout cable can provide two cost-effective and reliable solutions which can ensure smooth migration path and high performance of the network.

How Much Do You Know About MTP-8 Solution?

It is not difficult to find that MTP components are widely used for high density application in data centers. As 40G and 100G network has been utilized by many data centers, two common types of cabling solutions are popular among data center managers—MTP-12 solution and MTP-24 solution, which use links based on increments of 12 and 24, such as 12-fiber MTP MTP trunk cable and 24-fiber MTP MTP trunk cable. In addition to MTP-12 solution and MTP-24 solution, there is another MTP solution—MTP-8. So how much do you know about MTP-8 solution? This article will guide you to learn about MTP-8 solution.

Overview of MTP-12 Solution and MTP-24 Solution

Before we come to MTP-8 solution, let’s have a brief overview of MTP-12 solution and MTP-24 solution. In 40G networking applications, a 12-fiber MTP fiber connector is used: 10G is sent along each channel or fiber strand in a transmit and receive direction, and 8 of the 12 fibers are used to provide 40G parallel transmission. In 100G network applications, a 24-fiber MTP fiber connector is used: 10G is sent along each channel or fiber strand in a transmit and receive direction, and 20 of the 24 fibers are used to provide 100G parallel transmission. Here are two figures for you to have a better understanding of this.

MTP-12 Solution

MTP-12 Solution

MTP-24 Solution

MTP-24 Solution

Overview of MTP-8 Solution

In a MTP-8 solution or Base-8 solution, 8-fiber MTP MTP trunk cable, 24-fiber or 32-fiber MTP MTP trunk cable can be used to transmit data. In brief, MTP-8 solution uses cable links based on increments of the number “eight”. Since MTP-12 solution and MTP-24 solution have been using in the data center for years, you may ask is t necessary to use MTP-8 solution? From the figure below, we can find that in fiber optic industry, optical transceiver roadmap changes rapidly from 10G to 40G, 100G and even up to 400G. With faster speeds spreading out into data center racks and SANs, there is a need for a more manageable grouping. For 40G network applications and above, optical signals are usually carried over eight fibers, and terminated at the switch in a MTP-8 QSFP transceiver which combines eight fibers.

40G 100G 400G use MTP-8 solution

From the figure, we can also learn that for Ethernet transmission ranging from 40G to 400G, all roads lead to 2-fiber and 8-fiber solution. For 40G/100G and future 400G applications, the use of 12-fiber MTP solution would result in 33% of the optical fibers unused. Thus it is expected that for 400G application, MTP-8 will gain widespread market acceptance.

Advantages of MTP-8 Solution

There are two primary advantages of MTP-8 solution—flexibility and 100% fiber utilization. Being wholly divisible by number “2”, MTP-8 solution can be easily used for two-fiber transceiver systems, just as MTP-12 solution can be. And for those who have deployed 12-fiber or 24-fiber MTP MTP trunk cable, how to ensure the 100% fiber utilization? MTP-8 solution can. You can use conversion cords or modules to transition two 12-fiber or one 24-fiber  trunk from backbone cabling into three 8-fiber MTP for 40G/100G equipment connection. But in this process, conversion modules will introduce additional insertion loss into the channel and conversion cords. Thus deploying MTP-8 solution directly can ensure 100% fiber utilization without the additional cost and insertion loss of MTP-12 to MTP-8 conversion devices. In a word, for the most common 40G/100G/400G transceiver types, MTP-8 solution offers the most flexibility and uses the fibers to the fullest.

Conclusion

MTP-8 solution is considered as the most cost-effective connectivity solution for supporting the current and future 8-fiber applications. Anyone with a near-tern migration plan to adopt 40G or 100G in the data center will benefit a lot from adopting MTP-8 solution.